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Single-journey ML turbulence modeling

Training 
cases

Invariant 
Feature variables

𝑆!" ,𝑊!"

 or i j tu u µ¢ ¢-

q Solution will depend on initial solution.
q Lack of mean-flow feedback mechanism.
q May have physically unrealistic anti-diffusion.
q Numerically unstable.
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Two way coupling of ML turbulence modeling
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Training 
cases

Invariant 
Feature variables

𝑆!" ,𝑊!"

q Algebraic equations
§ Pope’s Caley-Hamilton equations
§ Algebraic stress model equations
§ viscosity equation,     *
§

q Differential equations
§ One-equation model equations*
§ Two-equation model equations*
§ Reynolds stress model equations

* with Boussinesq eddy viscosity hypothesis 

ML Machine may have several variations

kP e=

q Generalization of physical phenomena 
in different flow regimes may not be 
so obvious.

Initiate with Solution 
of conventional

turbulence model
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Benchmark building-block flows

• Successes in predicting benchmark flows are 
necessary conditions, not sufficient conditions, 
for model generalization.
• The model (or machine) must know to obey 

asymptotic behaviors. 
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My personal observations
ØML is a good compromise of several training data (flows).
ØML may miss details of (unmonitored) flow physics.
ØGalilean invariance is nice but:

ØFeatures invariance but f: may not
ØHow to identify similarity-scaling invariance, for example?

ØThe  accuracy of ML approach depends on the choice of the training data. 
ML models may be 
ØData dependent 
ØGeometry dependent
ØCase dependent 

ØExtension of the ML models to high Re number is questionable.
ØAre the training data extrapolatable?

ØCurrent ML approach is not flow-physics based.
ØCurrent ML models do not reply on building-block (benchmark) 

experiments.
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History of TMR

Ø1968 – AFOSR-IFP Stanford Conference
Ø1969 – Compressible TBL, NASA SP-216
Ø1972 – Free shear flows, NASA SP-321
Ø1980-81 – AFOSR HTTM-Stanford Conference of complex 

turbulent flows:  Comparison of Computation and 
experiments

Ø1996 – Bradshaw, Launder and Lumley’s  Olympics 
Ø2009 – Starting of Turbulence Modeling Resources Website
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Good Benchmark flows

ØWith distinct physical feature(s)
ØCannot be a one-point data
ØBC’s well documented
ØInsensitive to Re number
ØHigh resilience to changes

§ Why it is important to look for resilient expression.
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Cases Listing by Flow Physics
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ZPG flat plate boundary layer
• Incompressible flows
• 𝑐$ vs. 𝑅𝑒%
• 𝑢& vs. 𝑦&

• Compressible flows
• 𝑐!, VD-II
• Velocity and temperature 

transformation, VD-I, TL…
• Prt
• Use local properties
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Free Shear Flows
(round/plane jet anomaly) 

Flow types Spread parameter Experimental data

Round jet dr1/2/dx 0.086-0.095

Plane Jet dy1/2/dx 0.100-0.110

Mixing layer d(y0.9-y0.1)/dx 0.115

δ

/ 2cu U=

cU
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Mach number effects on mixing layer
compressibility effects
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Curvature effects
stableunstable
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Vortex flows

x=8.4 m

x=10.5 m

9 x m=
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Well-documented BC’s

/ 2.14x c = -
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Superpipe experiment

0.40 0.02k = ±

Effects of Re on the law of the wall
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DNS Results – LofW in 
Couette,  Channel and TBL flows

Resilience of the law of the wall

17
© George Huang



© George Huang

Resilience of the law of the wall
( )*

0
1 1

y

t
w

u u u dpu v dy
y x y dx

tµ
t

++ + + +
+ + +

+ + + +

æ ö¶ ¶ ¶
+ = + + + =ç ÷¶ ¶ ¶è ø

ò

Fa
vo

r P
-g

ra
di

en
ts

Adverse P-gradients

18
© George Huang



© George Huang

/
1 /

w

t

u
y

t t
µ µ

+

+

¶
=

¶ +

0dp
dx

+

+ >

unstable

Pp

0dp
dx

+

+ <

stable

P p

19

1
w

dp y
dx

t
t

+
+

+= +

1
1 y Dµk +=
+

Resilience of the law of the wall



© George Huang

Resilience of the Law of the wall 
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BL with weak APG (no flow separation)
Samuel-Joubert’s experiment vs. SA solution
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Progressive breakdown of LofW under weak APG
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(median APG)
Driver’s Axisymmetric (small) Separated BL
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Driver’s Axisymmetric (small) Separated BL
(median APG)
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Driver’s Axisymmetric (small) Separated BL
(median APG)
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NASA Wall-Mounted Hump Separated 
Flow
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NASA Wall-Mounted Hump Separated 
Flow
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NASA Wall-Mounted Hump Separated 
Flow
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NASA Wall-Mounted Hump Separated 
Flow
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NASA Wall-Mounted Hump Separated 
Flow
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NASA Wall-Mounted Hump Separated 
Flow
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NASA Wall-Mounted Hump Separated 
Flow

32



© George Huang

Slingshot effect
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Manchester’s TBL separation from a rounded step
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Johnson-Bachalo’s Transonic shock/BL/separation 
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NACA 4412 Airfoil Trailing Edge Separation
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Periodic hill

• DNS, Re=5,600
• ML, Re=5,600
• L-S 𝑘 − ε, Re=5,600

• LES, Re=10,595
• SA, , Re=10,595

39
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LES, , Re=10,595

SA, Re=10,595
DNS , Re=5,600

DNS , Re=5,600
𝒌 −ε, Re=5,600
ML, Re=5,600
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LES, , Re=10,595

SA, Re=10,595
DNS , Re=5,600

DNS , Re=5,600
𝒌 −ε, Re=5,600
ML, Re=5,600
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My wish lists

ØCan ML be less dependent on geometry similarity of the 
training flows?

ØHow to extend to high Re #?
ØDNS (or LES) only offers low Re # training data.

ØCan ML retain its memory (model’s success is accumulative) ?
ØCan ML accommodate flow physics? 
ØCan ML satisfy asymptotic behaviors of the benchmark 

flows?
ØSlingshot effects and vortex flows deserve further attention.
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